Faculty of Electrical and Electronics Engineering
FACULTY OF ELECTRICAL & ELECTRONICS ENGINEERING

INTRODUCTION

Faculty of Electrical & Electronics Engineering was established on 16th February, 2002. The main aim of the Faculty is to produce and train highly skilled engineers and technical assistants with diploma and/or degree level. The program offered is a combination of technology and engineering aspect with integration of applied and skilled based knowledge. This faculty is offering courses that focusing on industries in Peninsular Malaysia East Coast Industrial Corridor, mainly in chemical, petrochemical and manufacturing.

The faculty objective is to produce professional and semi-professional in electrical and electronics engineering. It is also aim to develop support specialist in electrical and electronics related to chemical, petrochemicals, manufacturing and process industry requirements.

This faculty will also embark on research and development activities in electrical and electronics engineering to produce expert groups relevant to the industries need especially in East Coast region. It is hoped that it will become the centre of reference for industry. It also hoped that the faculty will functions as a centre that channels innovative research products and expert services in electrical and electronics engineering to the local industries.

Vision

To be a world class faculty for competency-based technical education in Electrical & Electronics Engineering.

Mission

- To provide the highest quality competency-based technical education in electrical & electronics engineering to meet & exceed the needs of stakeholders.
- To continually improve our business through innovation & technology development by providing industrial-based facilities in line with the university focus areas.
- To develop our associates potential through participative & team involvement by providing a conducive environment that encourages creativity & innovativeness towards becoming a learning organisation.
Curriculum Design

For programmes in the faculty, the academic curriculum is designed based upon five top-down criteria:

- faculty vision and mission
- programme educational objectives
- programme outcomes
- course outcomes
- lesson outcomes

Basically, the creation of academic curriculum is initiated with the understanding of faculty vision and mission. From the faculty vision and mission, programme educational objectives are established.

Next, the programme outcomes were streamlined with the programme educational objectives. Once the relationship between the outcomes and objectives were determined, course outcomes and lesson outcomes were created.

As the world is rapidly gearing towards globalization, the creation of borderless countries has resulted greater competition for existing jobs and thus leading to competitive job market. Industries also become more and more technology-intensive and with the introduction of new engineering disciplines. Mastering technical principles is essential for an engineer to be in the forefront of industry because no matter how technology progress, the principles will be essentially to be the same. Therefore, a solid foundation in science and mathematics, and technical competencies are necessary in application, development and innovation of technology.

Future Malaysia engineers shall be trained with the stronger emphasis in the engineering sciences to enable greater flexibility in mastering the various engineering disciplines, particularly emerging ones and to develop their interest in R&D and innovation. In addition, they must be strong in the various skills related to industry such as in communications, team working, management, economics, finance, law, politics and the environment. Engineers must also trained in the humanities including ethics and professionalism and the exposed to future global scenarios and trends.

PROGRAMMES OFFERED

There are a total of four undergraduate programmes offered by the faculty for the 2013/2014 intake session as follows:

Degree in Electrical Engineering (Electronics) - BEE
Degree in Electrical Engineering (Power System) - BEP
Degree in Electrical Engineering (Control & Instrumentation) - BEC
Diploma in Electrical Engineering (Industrial Electronics) - DEE
Every programme is developed based on market survey of various stakeholders particularly the industry that the programme is eyeing to market the graduates. We can group the stakeholders into three categories as follows:

- Student, alumni and parents
- Employer & industry
- University & faculty advisory board/panel

Degree in Electrical Engineering (Electronics) - BEE

A bachelor graduate program contains knowledge of electrical and electronic system. It consists of design, construction, production, maintenance, experimentation and control over components and equipments of electrical systems.

Degree in Electrical Engineering (Power System) - BEP

A bachelor graduate program contains strong knowledge of electrical and electronic system. It consists of design, construction, production, maintenance, experimentation and control over components and equipments of electrical systems. To realize this industrialization objective, electrical and electronic engineers must strive for excellence in invention and innovation, managing and administrating electrical and electronic equipments.

Degree in Electrical Engineering (Control & Instrumentation) - BEC

A bachelor graduate program contains strong knowledge of electrical and electronic systems and control engineering. It consists of innovative design solution, construction, production and maintenances, major in control, automation and instrumentation engineering problems throughout experimental via industrial scale laboratories. The focus sub-areas: instrumentations, control and optimization, robotics and automation.

Diploma in Electrical Engineering (Industrial Electronics) - DEE

This is a 3-year programme, specializing in industrial electronics engineering technology. At the end of the study, graduates will be awarded with a diploma, a technical skills certificate, and a soft skills certificate.

Programme Educational Objectives (PEO)

PEO1: Graduates achieve advance standing professionally based on their technical expertise & accomplishment related to engineering practice and research, or in other fields they choose to pursue.

PEO2: Graduates continue to acquire knowledge in technical and non-technical areas in pursuit of life-long learning.
PEO3: Graduates demonstrate commitment to the community and the professions, holding responsible positions that contribute to the benefits of the society.

Programme Outcomes (PO)

PO1: Knowledge – Ability to acquire and apply knowledge of sciences and electrical and electronics engineering fundamentals

PO2: Technical Skills – Ability to acquire in-depth technical competency in specific engineering discipline

PO3: Problem Solving Skills – Ability to identify, formulate and provide effective solution to engineering problems

PO4: Design – Ability to utilize system approach to design and evaluate system performance

PO5: Sustainability – Ability to describe the design principles for sustainable development

PO6: Integrity – Ability to demonstrate the professional and ethical responsibilities

PO7: Communication Skills – Ability to communicate effectively with multidisciplinary professions and community at large

PO8: Leadership – Ability to function effectively as individual and in group with the capacity to be a leader

PO9: Comprehensive World View – Ability to understand the social, cultural, global and environmental responsibilities of a professional engineer

PO10: Life-Long Learning – Ability to recognise the need for, and possess the capability in life-long learning

PO11: Versatile – Ability to utilize modern engineering tools necessary for engineering practice and adaptable to industrial needs

PO12: Technopreneurship – Ability to explain the entrepreneurship concept in engineering practice
Career Opportunities

The demand for professionals in the fields of electrical and electronics is increasing by the year. This is due to the increase in the investments made by foreign investors in Malaysia. Graduates will have the opportunity to work in the fields of industrial power systems, consumer and industrial electronics, manufacturing, and education.

Laboratories and Facilities

The engineering laboratories provided by Faculty of Electrical & Electronics Engineering are as follows:

- Basic Engineering Lab
- Computer-based Lab
- Physics Lab
- Printed Circuit Board (PCB) Fabrication Lab
- Instrumentation & Process Control Lab
- Programmable Logic Control (PLC)
- Mini Plant
- Calibration Lab
- Robotics Lab
- Pneumatic Lab
- Electrical Installation & Workshop
- Motor Control Lab
- Basic Machine Lab
- Machine & Drive Lab
- Power System Lab
FACULTY MANAGEMENT

YH Professor Dato Dr. Mortaza bin Mohamed
Dean
Ph.D. in Computer Ctrl. Systems, UTM
M. Eng. Control Systems, Sheffield, UK
B. Sc. (Hons) Electrical Eng, Southampton, UK
Phone: 094245021
Email: mortaza@ump.edu.my

Dr. Hamzah bin Ahmad
Deputy Dean Of Academic & Student Affairs
Phd. In Electrical & Electronics Eng., Kanazawa University, Japan
M.Eng. Electrical, KUITTHO
B.Eng. Electric & Electronics Eng. , Shinshu University, Japan
Phone: 094246024
Email: hamzah@ump.edu.my

Dr. Mohd Razali bin Daud
Deputy Dean Of Research & Post Graduates
PhD. In Robotics & Mechatronics Engineering, Chiba University, Japan
M.Sc. In Engineering (Control & Automation), UPM
BSc. Electronics, Ibaraki University, Japan
Phone: 094246048
Email: mrazali@ump.edu.my

Dr. Fahmi bin Samsuri
Head of Electronics Programme
PhD Electrical & Electronics Eng, Canterbury University, New Zealand
M.Sc. Microelectronics, UKM
B.Eng. Electrical, Electronic & System Eng., UKM
Phone: 094246017
Email: fahmi@ump.edu.my

Dr. Abu Zaharin Bin Ahmad
Head of Electrical Programme
PhD. Electrical Engineering, Chiba University, Japan
M.Sc. Control System, UiTM
B.Sc. (Hons) Electrical Power, UiTM
Dip. Electrical Power, UiTM
Phone: 094246133
Email: zaharin@ump.edu.my

Dr. Addie Irawan bin Hashim
Head of Control & Instrumentation Programme
PhD. In Electrical & Electronics, Chiba University, Japan
MSc. Electrical & Electronics Eng.(Computer Communication), USM
B.Eng. Electrical & Electronics Eng., (Computer Engineering), USM
Phone: 094246003
Email: addieirawan@ump.edu.my
Dr. Hamdan Bin Daniyal
Head of Diploma Programme
PhD. Electrical Engineering University of Western Australia, Australia
M.Eng. Electrical, KUITTHO
B. Eng. (Hons) (Electrical & Electronics), UTM
Phone: 094246023
Email: hamdan@ump.edu.my

Nidzamuddeen bin Ishak
Head of Technical
B. Eng. (Hons) Electrical & Electronics, UNITEN
Phone: 094246136
Email: nidzamuddeen@ump.edu.my

Arman bin A.Rahim
Senior Assistant Registrar
BSc. Business & Economics (Marketing), Lehigh University, USA
Phone: 094246116
Email: arman@ump.edu.my
ACADEMIC STAFF

Professor

YH Professor Dato Dr. Mortaza bin Mohamed
Ph.D. in Computer Ctrl. Systems, UTM
M. Eng. Control Systems, Sheffield, UK
B. Sc. (Hons) Electrical Eng, Southampton, UK
Phone: 094245021
Email: mortaza@ump.edu.my

Associate Professors

Associate Prof. Dr. Ahmed N. Abdalla
PhD. in Electrical Eng., HUST, Wuhan China
M.Sc. in Electrical Eng., UOT, Baghdad, Iraq
B.Sc. in Electrical Eng., UOT, Baghdad, Iraq
Dip. in Communication, Communication Institution, Baghdad
Phone: 094246010
Email: ahmed@ump.edu.my

Associate Prof. Dr. Zuwairie bin Ibrahim
PhD in Engineering (DNA Computing), Meiji University, Japan
Masters in Electrical Engineering (Image Processing), UTM
Bachelor in Electrical Engineering (Mechatronics), UTM
Phone: 094246141
Email: zuwairie@ump.edu.my

Associate Prof. Dr. Kamarul Hawari bin Ghazali
PhD in Electrical Eng., UKM
M. Eng. Electrical, UTM
B. Eng. Electrical, UTM
Phone: 094246029
Email: kamarul@ump.edu.my

Senior Lecturers

Dr. Hamzah bin Ahmad
PhD. in Electrical & Electronics Eng., Kanazawa University, Japan
M.Eng. Electrical, KUITTHO
B.Eng. Electric & Electronics Eng., Shinshu University, Japan
Phone: 094246024
Email: hamzah@ump.edu.my

Dr. Mohd Razali bin Daud
PhD. in Robotics & Mechatronics Engineering, Chiba University, Japan
MSc. In Engineering (Control & Automation), UPM
BSc. Electronics, Ibaraki University, Japan
Phone: 094246048
Email: mrazali@ump.edu.my

Dr. Fahmi bin Samsuri
PhD Electrical & Electronics Eng, Canterbury University, New Zealand
M.Sc. Microelectronics, UKM
B.Eng. Electrical, Electronic & System Eng., UKM
Phone: 094246017
Email: fahmi@ump.edu.my

Dr. Abu Zaharin Bin Ahmad
PhD. Electrical Engineering, Chiba University, Japan
M.Sc. Control System, UiTM
B.Sc. (Hons) Electrical Power, UiTM
Dip. Electrical Power, UiTM
Phone: 094246133
Email: zaharin@ump.edu.my

Dr. Addie Irawan bin Hashim
PhD. In Electrical & Electronics, Chiba University, Japan
MSc. Electrical & Electronics Eng.(Computer Communication), USM
B.Eng. Electrical & Electronics Eng., (Computer Engineering), USM
Phone: 094246003
Email: addieirawan@ump.edu.my
Dr. Hamdan Bin Daniyal
PhD. Electrical Engineering
University of Western Australia, Australia
M.Eng. Electrical, KUITTTHO
B. Eng. (Hons) (Electrical & Electronics), UTM
Phone: 094246023
Email: hamdan@ump.edu.my

Dr. Rosdiyana binti Samad
PhD. In Electrical & Electronics Engineering, Kagawa University, Japan
M. Sc. Image Processing – Neural Networks, USM
B. Eng. Electric & Electronics Comm., KUITTTHO
Phone: 094246099
Email: rosdidyana@ump.edu.my

Dr. Mohd. Herwan bin Sulaiman
PhD. In Electrical Engineering, UTM
MSc. Engineering Electrical Power, UTM
BSc. Engineering (Electrical-Electronics), UTM
Phone: 094246140
Email: herwan@ump.edu.my

Dr. Yusnita Rahayu
PhD. In Electrical Engineering, UTM
M. Eng. Electrical Engineering, UTM
B. Eng. Electrical Engineering, ISTN Jakarta, Indonesia
Phone: 094246128
Email: yusnita@ump.edu.my

Dr. Sunardi
PhD. Electrical Engineering, UTM
M.Sc. Electrical Engineering, Institut Teknologi Bandung, Indonesia
BSc. Electrical Engineering, Universitas Gadjah Mada, Indonesia
Phone: 094246114
Email: sunardi@ump.edu.my

Dr. Mojgan Hojabri
PhD. Electrical Power Engineering, UPM
MSc. Electrical Power Engineering, Azad University, Iran
BSc. Electrical Engineering, University of Tabriz, Iran
Phone: 094246139
Email: mojganhojabri@ump.edu.my

Dr. Nor Rul Hasma binti Abdullah
PhD in Electrical Engineering, UiTM
M.Eng. Electrical, KUITTTHO
B.Eng. (Hons) Electrical, UTM
Phone: 094246078
Email: hasma@ump.edu.my

Dr. Ayib Rosdi bin Zainun
PhD. In Electrical Engineering, UiTM
M. Deg. of Eng., Institute of Technology, Japan
B. Eng. Electrical & Electronics, UTM
Dip. of Electrical Engineering – Sasebo College of Technology, Nagasaki, Japan
Cert. of Electrical Eng., Politeknik Ungku Omar
Phone: 094246013
Email: ayib@ump.edu.my

Dr. Saifudin bin Razali
PhD. In Electrical Engineering, Okayama University, Japan
M.Eng. Electrical, UTM
B.Eng. (Hons) Electrical, UTM
Phone: 094246103
Email: saifudin@ump.edu.my

Dr. Zainah binti Md Zain
PhD. In Electrical Engineering, Okayama University, Japan
M.Sc. Electrical & Electronic Engineering – Intelligent Robot Control, USM
B.Eng. Electrical & Electronic Comm., USM
Phone: 094246123
Email: zainah@ump.edu.my
Dr. Mohammad Fadhil bin Abas
PhD. in Electrical Engineering (Control & Robotics), Chiba University, Japan
M Sc. Electrical Power Eng., UPM
B. Eng. (Hons) Electrical, Electronic & System, UKM
Phone: 094246038
Email: mfadhil@ump.edu.my

Dr. Mohd Ruslim bin Mohamed
PhD in Electrical Engineering, UMP
M. Eng. Electrical, KUiTTHO
B. Eng. (Hons) Electronics, University Of Warwick, UK
Dip in Electrical Eng.(Power), UiTM
Phone: 094246052
Email: ruslim@ump.edu.my

Dr. Ramdan bin Razali
PhD. in Engineering, MMU
M.Eng. Sc. Electrical, MMU
B. Sc. Electrical Eng., University of Miami, USA
Phone: 094246095
Email: ramdan@ump.edu.my

Dr. Dwi Pebrianti
PhD. in Engineering (Gas Sensor Development), Chiba University, Japan
MSc. of Engineering (Gas Sensor Development), University of Tokyo, Japan
BSc. in Engineering (Electrical Engineering), University Indonesia, Jakarta, Indonesia
Phone: 094246127
Email: pebriantidwi@gmail.com

Badaruddin bin Muhammad
M. Eng. Electrical, UTM
B. Eng. Electrical, UTM
Dip. Electronics Eng., politeknik Kota Bharu
Phone: 094246015
Email: badaruddin@ump.edu.my

Ir. Zulkeflee bin Khalidin
M. Eng. Electronics, Kumamoto, Japan
B.Eng.(Hons) Electrical, UTM
Phone: 094246125
Email: zulkeflee@ump.edu.my

Nik Mohd Kamil bin Nik Mohd Yusoff
M. Eng. Electrical, UTM
B. Eng. Arizona State University, USA
Phone: 094246069
Email: nik@ump.edu.my

Lecturers

Abdul Halim bin Mohd Hanafi
M. Sc. Electrical Power Engineering, UPM
B. Eng. Electrical & Electronics, UPM
Phone: 094246010
Email: abdulhalim@ump.edu.my

Fairuz Rizal bin Mohamad Rashidi
M.Sc. Microelectronics, UKM
B.Eng. Computer, UTM
Phone: 094246018
Email: fairuz@ump.edu.my

Faradila binti Naim
MSc. Medical Imaging, University of Surrey, UK
BSc. Systems & Control Engineering, Case Western Reserve University, USA
Phone: 094246019
Email: faradilan@ump.edu.my

Mohd. Falfazli bin Mat Jusof
M.Eng. Applied Electroncs, Ehime University, Japan
B.Eng. Electrical, Ehime University, Japan
Phone: 094246043
Email: falfazli@ump.edu.my
Haszuraidah binti Ishak
M. Electrical Eng. (Mechatronics & Automatic Control), UTM
B. Electrical Eng. (Electronic & Mechatronics), UTM
Phone: 094246025
Email: haszuraidah@ump.edu.my

Noor Lina binti Ramli
MSc of Power Electronics & Drives, University of Nottingham, UK
B. Electrical Eng. (Electronics), UMP
Phone: 094246071
Email: noorlina@ump.edu.my

Ikhwan Hafiz bin Muhamad
M. Eng. Micro-system Technology, University of Southampton, UK
B. Eng. Electronics, University of Southampton, UK
Phone: 094246028
Email: ikhwanh@ump.edu.my

Nor Laili binti Ismail
MSc of Electrical Engineering, University of Nottingham, UK
B. Electrical Eng. (Electronics), UMP
Phone: 094246077
Email: norlaili@ump.edu.my

Md Rizal bin Othman
M.Eng. Electronics, UTM
B.Eng. Electronics, UTM
Dip.in Electronics Eng., UTM
Phone: 094246036
Email: rizal@ump.edu.my

Norhafidzah binti Mohd Saad
M.Sc. in Electrical Power Engineering, UPM
B.Eng. (Hons) Electrical, Electronic & System,UKM
Phone: 094246084
Email: norhafizah@ump.edu.my

Muhammad Ikram bin Mohd. Rashid
M.Eng. Electrical-Power, UTM
B.Eng. Electrical, UTM
Phone: 094246063
Email: mikram@ump.edu.my

Norizam bin Sulaiman
M.Sc. Electronic Systems Design, USM
B.Eng. Computer Eng., Valparaiso University, USA
Phone: 094246085
Email: norizam@ump.edu.my

Mohd Riduwan bin Ghazali
M.Eng. Electrical-Mechatronics & Automatic Control, UTM
B. of Eng. Electrical-Mechatronics, UTM
Phone: 094246051
Email: riduwan@ump.edu.my

Norainon binti Mohamed
M.Eng. Electrical, UMP
B.Eng. Industrial Electronics, UNIMAP
Phone: 094246079
Email: norainon@ump.edu.my

Muhammad Salihin bin Saealal
M.Eng.Electrical Mechatronics,UTM
B.Eng. Electrical-Electronics, UTM
Phone: 094246064
Email: salihin@ump.edu.my

Nurul Wahidah binti Arshad
MSc of Communications and Signal Processing, Newcastle Upon Tyne University, UK
B. Eng. Electrical, UTHM
Phone: 094246090
Email: wahidah@ump.edu.my

Nurulfadzilah binti Hasan
M.Eng. Electrical, UTM
B.Eng. (Hons) (Computer), UTM
Phone: 094246091
Email: nurulfadzilah@ump.edu.my
Razali bin Muhammad
M. Eng. Electrical, UTM
B. Eng. (Hons) Elect., UTM
Phone: 094246096
Email: razali@ump.edu.my

Rosyati binti Hamid
M. Eng. Communication & Computer, UKM
B. Eng. Telecommunications, UM
Phone: 094246101
Email: rosyati@ump.edu.my

Siti ’Aisyah binti Abdul Wahid
M. Eng. Electrical-Power, UTM
B. Eng. Electrical, UTM
Phone: 094246109
Email: sitiaisah@ump.edu.my

Suliana binti Ab Ghani
M. Eng. Electrical-Power. UTM
B. Electrical Eng. (Electronics), UMP
Phone: 094246113
Email: suliana@ump.edu.my

Wan Ismail bin Ibrahim
M. Eng. Electrical-Power, UTM
B. Electrical Eng. (Electronics), UMP
Phone: 094246118
Email: wismail@ump.edu.my

Yasmin binti Abdul Wahab
M. Eng. Electrical Mechatronic & Automatic Control, UTM
B. Eng. (Hons) Electrical – Instrumentation & Control, UTM
Phone: 094246121
Email: yasmin@ump.edu.my

Bakri bin Hassan
M. Eng. Electrical, UTM
B. Sc. Electrical Engineering, Univ. of Evansville, USA
Phone: 094246016
Email: bakri@ump.edu.my

Mahfuzah binti Mustafa
M. Eng. Electrical, KUITTHO
B. Eng. Computer Systems & Communications, UPM
Dip. in Electronics Eng., UTM
Phone: 094246031
Email: mahfuzah@ump.edu.my

Maziyah binti Mat Noh
M. Sc. Automation & Control, Univ of Newcastle Upon Tyne, UK
B. Eng. Electrical & Electronics (Hons), Univ of Newcastle Upon Tyne, UK
Dip. in Electronics Eng., UTM
Phone: 094246034
Email: maziyah@ump.edu.my

Mohd Shafie bin Bakar
M. Eng., UTM
B. Eng. (Hons), Brookes Univ., UK
Dip. in Electronics Eng., UTM
Phone: 094246054
Email: shafie@ump.edu.my

Mohd Shawal bin Jadin
M. Sc. Electrical and Electronic Eng., USM
B. Eng. (Electric & Electronics) (Hons), USM
Phone: 094246056
Email: mohdshawal@ump.edu.my

Muhammad Sharfi bin Najib
M. Sc. Automation & Control, University of Newcastle Upon Tyne, UK
B. Eng. Mechatronics, UIAM
Phone: 094246065
Email: sharfi@ump.edu.my

Mohd Zaidi bin Mohd Tumari
M. Eng. (Electrical, Mechatronics and Automatic Control), UTM
B. Eng. (Electrical – Mechatronics), UTM
Phone: 094246059
Email: zaidimt@ump.edu.my

Marlina binti Yakno
MSc. Electrical & Electronics Engineering, USM
B. of Electrical and Electronics Eng. (Hons), UNITEN
Phone: 094246032
Email: marlina@ump.edu.my
Consultant Fellow

Saiyed Rasol bin Tuan Muda
MSc. (CNAA) Information Technology, Leicester Polytechnics, DeMonfort University, UK
Advanced Diploma Computer Science, UTM
BSc. (CNAA) Electrical & Electronics Engineering, Sunderland Polytechnics, Sunderland University, UK
Diploma in Electrical Communication Engineering, UTM
Phone: 094246104
Email: srasol@ump.edu.my

Tutors

Norasyikin binti Fadilah
B. Eng. (Electrical), Stevens Institute of Technology, USA
Phone: 094246080
Email: norasyikin@ump.edu.my

Norazian binti Subari
B. of Eng. (Hons) (Electrical), UiTM
Dip. in Electrical Eng. (Instrumentation), UiTM
Phone: 094246081
email: norazian@ump.edu.my

Nor Hadzfizah binti Mohd Radi
B. of Eng. (Hons) (Electrical), UiTM
Dip. of Electrical Eng. (Communication), UiTM
Telephone: 094246083
Email: norhadzfizah@ump.edu.my

Zulkifli bin Musa
B.Eng. Power Electronic & Drives, UTeM
Telephone: 094246126
Email: zkifli@ump.edu.my

Mohd Helmi bin Suid
B. Electrical Eng. (Control, Instrumentation & Automation) (UTeM)
Telephone: 094246045

Email: helmi@ump.edu.my

Staff on Study Leave

Airul Sharizli bin Abdullah
Pursuing PhD, UM
M. Eng., UM
B. in Electrical Eng. (Telecommunication), UM
Email: sharizli@ump.edu.my

Ahmad Nor Kasruddin bin Nasir
Pursuing PhD, Sheffield University, UK
M. Eng. Mechatronics, UTM
B. Eng. Mechatronics, UIAM
Email: kasruddin@ump.edu.my

Ir. Muhamad Zahim bin Sujod
Pursuing PhD, Universitat Duisburg-Essen, Germany
M.Eng. Electrical & Electronics, Ehime Univ. Japan
B. Eng. Electrical & Electronics, Ehime Univ. Japan
Email: zahim@ump.edu.my

Ahmad Johari bin Mohamad
Pursuing PhD, Warwick University, UK
M.Eng. Electrical, KUiTTHO
B. Eng. (Hons) Electronics, Warwick University, UK
Dip in Electrical Eng. (Power), UiTM
Email: johari@ump.edu.my

Amran bin Abdul Hadi
Pursuing PhD, Cardiff University, UK
M.Eng. Systems – Cellular Neural Networks, University Miyazaki, Japan
B. Eng. Electrical & Electronics, University Miyazaki, Japan
Email: amranhadi@ump.edu.my

Ruhaizad bin Ishak
Pursuing PhD, UKM
M.Sc. Electrical Eng., UPM
B.Sc. Electrical and Electronics Eng., UKM
Email: ruhaizad@ump.edu.my
Omar bin Aliman
Pursuing PhD, UiTM
M. Eng. Optical Engineering (Solar Energy), UTUM
B. Sc. Electrical Eng., Hanyang University, South Korea
Email: omaraliman@ump.edu.my

Nurul Hazlina binti Noordin
Pursuing PhD, University of Edinburgh, Scotland
M. Sc. Electrical & Electronics Eng., USM
B. Eng. Electrical & Electronics Eng., USM
Email: hazlina@ump.edu.my

Mohd Zamri bin Ibrahim
Pursuing PhD, Loughborough University, UK
M. Eng. Electrical, UTM
B. Eng. Electrical – Mechatronics, UTM
Email: zamri@ump.edu.my

Mohd Anwar bin Zawawi
Pursuing PhD, University of Limerick, Ireland
M. Eng. Electrical – Mechatronics & Automation Control, UTM
B. Eng. Electrical – Mechatronics, UTM
Email: mohdanwar@ump.edu.my

Mohd Ashraf bin Ahmad
Pursuing PhD, Kyoto University, Japan
M. Eng. Mechatronics & Automatic Control, UTM
B. Electrical-Mechatronics Engineering, UTM
Email: mashraf@ump.edu.my

Mohd Redzuan bin Ahmad
Pursuing PhD, UiTM
M. Eng. Electrical, UTM
B. Eng. Electrical, UTM
Dip. Electrical Eng. (Power), UTM
Email: mredzuan@ump.edu.my

Mohd Syakirin in Ramli
Pursuing PhD, Kanazawa University, Japan
M. Eng of Electrical Eng. (Mechatronics & Automatic Control), UTM
B. Sc. Electrical Eng., Purdue University, USA
Email: syakirin@ump.edu.my

Nor Farizan binti Zakaria
Pursuing PhD, UKM
M.Eng. Electrical (Electronics & Telecommunications), UTM
B. Eng. Electrical – Electronics, UTM
Email: norfarizan@ump.edu.my

Raja Mohd Taufika bin Raja Ismail
Pursuing PhD, University of Technology, Sydney, Australia
M.Sc. Mathematics, UTM
B. of Electrical Eng., UTM
Email: rajamohd@ump.edu.my

Rohana binti Abdul Karim
Pursuing PhD, UKM
M. Sc. Computer (Software Eng.), UPM
B. Electrical Eng. (Information System), KUiTTHO
Email: rohanaak@ump.edu.my

Ir. Rosmadi bin Abdullah
Pursuing PhD, UM
M. Eng. Electrical (Power), UTM
B. Eng. (Electrical - Mechatronics), UTM
Email: rosmadi@ump.edu.my

Normaniha binti Abd Ghani
Pursuing PhD, Sheffield University, UK
M. Eng. Electrical (Mechatronics & Control Automation), UTM
B. Eng. Electrical, UTM
Email: normaniha@ump.edu.my

Mohd Hisyam bin Mohd Ariff
Pursuing PhD, UiTM
M. Eng. Electrical, UTHM
B. Electrical/Electronic Eng., UiTM
Email: hisyam@ump.edu.my
Lailatul Niza binti Muhammad
Pursuing PhD, UM
M. Sc. Electrical (Power), UTM
B. Eng. (Hons.) Electrical (Electronics), UiTM
Email: lailatul@ump.edu.my

Norazila binti Jaalam
Pursuing PhD, UM
MSc of Electrical Power, Newcastle Upon Tyne University, UK
B. Electrical Eng. (Electronics), UMP
Email: zila@ump.edu.my

Zinnirah binti Kasim
Pursuing Masters, Bonn, Germany
B. of Eng. (Mechatronics) (Hons), (UIAM)
Email: zinnirah@ump.edu.my

Technical Staff

Vocational Training Officers

Mohamad Azlan bin Mat Hussin
B. Eng. (Hons) Electrical & Electronics, UMS
Phone: 094246037
Email: azlan@ump.edu.my

Nidzamuddeen bin Ishak
B. Eng. (Hons) Electrical & Electronics, UNITEN
Phone: 094246136
Email: nidzamuddeen@ump.edu.my

Hairul Ajiki bin Hashim
B. Tech and Edu. (Electrical Eng.), UTM
Dip. in Electronic Eng., POLISAS
Cert. in Electronic Eng., POLIKU
Phone: 094246021
Email: hairulajiki@ump.edu.my

Nasrul bin Salim Pakheri
B. Eng. (Hons) Electrical (Instrumentation), UiTM
Dip. Eng. Electrical (Power), UTM
Phone: 094246066
Email: nasrul@ump.edu.my

Nazriyah binti Hj. Che Zan @Che Zain
B. Eng. (Hons) Electrical (Power), UTM
Phone: 094246067
Email: nazriyah@ump.edu.my

Nik Mohd Zaitul Akmal bin Mustapha
B. Eng. (Hons) Electrical (Microelectronic), UTM
Dip. Electrical Eng. (Communication), UTM
Phone: 094246070
Email: nikmdzaitul@ump.edu.my

Noor Zaihah binti Jamal
B. Eng. (Electronic) (Hons), USM
Phone: 094246072
Email: zaihah@ump.edu.my

Shah Khairul Faizul bin Ilias
B. Eng. (Hons) (Electrical), UTM
Phone: 094246105
Email: shahkhairul@ump.edu.my

Syahrulnaim bin Mohamad Nawi
B. Eng. (Hons) (Electrical), UTM
Telephone: 094246115
Email: syahrulnaim@ump.edu.my

Shahrizal bin Saat
B. Eng. Electrical – Electronics, UTM
Telephone: 094246106
Email: sharizal@ump.edu.my

Datin Zailini binti Mohd Ali
B. Sc. Electrical Engineering, Hanyang Univ., Korea
Telephone: 094246122
Email: zailini@ump.edu.my

Wan Hassan bin Wan Hamat
B. Eng. Electrical – Mechatronics, UTM
Dip. Mechatronic Eng., Politeknik Kota Bharu
Telephone: 094246117
Email: hassan@ump.edu.my
Wan Norhisyam bin Abd Rashid
B. Eng. (Hons) Electrical (Power), UTM
Telephone: 094246119
Email: norhisym@ump.edu.my

Nor Zarira binti Mohd Salleh
B. Electrical Engineering (Electronics), UMP
Phone: 094246088
Email: norzarira@ump.edu.my

Assistant Vocational Training Officer

Ahmad Zainuddin bin Mohamed
Dip. In Electrical Eng.(Power & Control), Politeknik Sultan Abdul Halim Mu’adzam Shah
Cert. Chargeman A0
Phone: 094246008
Email: ahmad@ump.edu.my

Hairul Muazammil bin Ismail
Dip. In Engineering Technology Computer Systems and Network, ADTEC
Phone: 094246022
Email: muazammil@ump.edu.my

Maznida binti Mohamad
Dip. in Electrical Engineering (Power), UiTM
Phone: 094246035
Email: maznida@ump.edu.my

Mohd Nizam bin Md Isa
Dip. Kejururertaen Mekanikal (Mekatronik), Politeknik Johor Bahru
Phone: 094246047
Email: nizamisa@ump.edu.my

Mohd Rezal bin Mohd Ariffin
Dip. Electronics Eng., Politeknik Kota Bharu
Phone: 094246050
Email: rezel@ump.edu.my

Mohd Salmizan bin Mohd Zain
Dip. Electrical & Electronics Engineering, UTM
Phone: 094246053
Email: salmizan@ump.edu.my

Mohd Zahir bin Salim
Dip. Electronic Communication, Politeknik Shah Alam
Phone: 094246058
Email: zahir@ump.edu.my

Muhammad Hamka bin Embong
Dip. Mechatronics Eng., Politeknik Kota Bharu
Phone: 094246062
Email: hamka@ump.edu.my

Nor Azila Wati binti Mohd Amin
Dip. in Electronics Engineering, UTM
Phone: 094246075
Email: norazila@ump.edu.my

Razman bin Mohd Maulot
Dip. Electronics Eng., Politeknik Johor Bahru
Phone: 094246097
Email: razman@ump.edu.my

Siti Murzalina binti Mohd Zain
Dip. Electrical Eng., POLISAS
Cert. in Electrical Power, POLISAS
Phone: 094246110
Email: sitimurzalina@ump.edu.my

Assistant Vocational Training Officer

Azri bin Idris
Sijil Kemahiran Malaysia (Mekatronik) Tahap 3
Phone: 094246014
Email: azriidris@ump.edu.my

Senior Assistant Registrar

Arman Bin A.Rahim
BSc. Business & Economics (Marketing), Lehigh University, USA
Phone: 094246116
Email: arman@ump.edu.my
Assistant Admin Officers

Ahmad Salimi Bin Ashaari
Dip. Computer Science, UiTM
Phone: 094246007
Email: asalimi@ump.edu.my

Sharmiza Binti Abdullah
Sijil Tinggi Pelajaran Malaysia (STPM)
Phone: 094246107
Email: sharmiza@ump.edu.my

Admin Assistant (Secretary)

Norliza Binti Osman
Dip. Secretarial Science, POLISAS
Phone: 094246086
Email: norliza@ump.edu.my

Admin Assistants

Masyithah binti Mohamad Ali
Sijil Pelajaran Malaysia (SPM)
Phone: 094246033
Email: masyithah@ump.edu.my

Mohd Aliff bin Mohd Radzuan
Sijil Pelajaran Malaysia (SPM)
Phone: 094246039
Email: aliff@ump.edu.my

Ahmad Saifuddin bin Abdul Manan
Sijil Pelajaran Malaysia (SPM)
Phone: 094246000
Email: saifuddin@ump.edu.my

Salmiah binti Salim
Sijil Pelajaran Malaysia (SPM)
Phone: 094246143
Email: salmiah@ump.edu.my

Admin Assistant (Finance)

Noorliana binti Mamat
Sijil Pelajaran Malaysia (SPM)
Phone: 094246074
Email: noorliana@ump.edu.my

General Office Assistant

Mohd Hafiz bin Awang Ibrahim
Sijil Pelajaran Malaysia (SPM)
Telephone: 094246044
Email: hafizm@ump.edu.my
DIPLOMA IN ELECTRICAL ENGINEERING (INDUSTRIAL ELECTRONICS) DEE

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>FIRST</th>
<th>SECOND</th>
<th>FIRST</th>
<th>SECOND</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIRST</td>
<td>SECOND</td>
<td>FIRST</td>
<td>SECOND</td>
<td>FIRST</td>
<td>SECOND</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR</td>
<td>FIRST</td>
<td>SECOND</td>
<td>FIRST</td>
<td>SECOND</td>
<td>FIRST</td>
<td>SECOND</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIRST</td>
<td>SECOND</td>
<td>FIRST</td>
<td>SECOND</td>
<td>FIRST</td>
<td>SECOND</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL ENGINEERING CORE COURSES

<table>
<thead>
<tr>
<th>SHORT SEMESTER</th>
<th>FIRST</th>
<th>SECOND</th>
<th>FIRST</th>
<th>SECOND</th>
<th>FIRST</th>
<th>SECOND</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST</td>
<td>DEE1123 Circuit Analysis</td>
<td>DEE1951 Domestic Wiring</td>
<td>DEE2931 Programmable Logic Control</td>
<td>DEE1941 Technical Drawing</td>
<td>DEE2941 Motor Control</td>
<td>DEE2961 Industrial Installation</td>
</tr>
<tr>
<td>SECOND</td>
<td>DEE2123 Circuits Analysis II</td>
<td>DEE1961 Metrology</td>
<td>DEE2933 Analog Electronics II</td>
<td>DEE1961 Technical Drawing</td>
<td>DEE2941 Motor Control</td>
<td>DEE2961 Industrial Installation</td>
</tr>
<tr>
<td>FIRST</td>
<td>DEE1233 Analog Electronic I</td>
<td>DEE2313 Principles of Control Systems</td>
<td>DEE3213 Basic Electrical Machines & Power Systems</td>
<td>DEE3719 Industrial Training</td>
<td>DEE3233 Basic Electrical Machines & Power Systems</td>
<td>DEE3723 Industrial Training Report</td>
</tr>
<tr>
<td>SECOND</td>
<td>DEE612 Basic Maintenance Technology</td>
<td>DEE3143 Basic Electrical Machines & Power Systems</td>
<td>DEE3223 Industrial Electronics</td>
<td>DEE3719 Industrial Training</td>
<td>DEE3263 Embedded Controller Technology</td>
<td>DEE3931 Electro Pneumatic</td>
</tr>
<tr>
<td>SECOND</td>
<td>DEE3719 Industrial Training</td>
</tr>
</tbody>
</table>

University Required Courses

Total Units For Graduation
- 97 units
Foreign Language Electives

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF1111</td>
<td>Mandarin for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1121</td>
<td>German for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1131</td>
<td>Japanese for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1141</td>
<td>Arabic for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>YEAR</td>
<td>FIRST</td>
<td>SECOND</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>SEM</td>
<td>FIRST & SECOND</td>
<td>FIRST & SECOND</td>
</tr>
<tr>
<td>1</td>
<td>BEE1133 Electrical Wiring</td>
<td>BEE1931 Basic Electronic Applications</td>
</tr>
<tr>
<td></td>
<td>BEE1133 Circuit Analysis I</td>
<td>BEE1213 Basic Electronics</td>
</tr>
<tr>
<td></td>
<td>BEE1811 Occupational Safety & Health</td>
<td>BEE2223 Digital Electronics</td>
</tr>
<tr>
<td>2</td>
<td>BEE2213 Analog Electronics I</td>
<td>BEE2213 Analog Electronics II</td>
</tr>
<tr>
<td></td>
<td>BEE2213 Analog Electronics I</td>
<td>BEE2213 Analog Electronics II</td>
</tr>
<tr>
<td></td>
<td>BEE2213 Analog Electronics I</td>
<td>BEE2213 Analog Electronics II</td>
</tr>
<tr>
<td></td>
<td>BEE2213 Analog Electronics I</td>
<td>BEE2213 Analog Electronics II</td>
</tr>
<tr>
<td>3</td>
<td>BEE3113 Instrumentation & Measurements</td>
<td>BEE3123 Basic Programming</td>
</tr>
<tr>
<td></td>
<td>BEE3113 Instrumentation & Measurements</td>
<td>BEE3123 Basic Programming</td>
</tr>
<tr>
<td></td>
<td>BEE3113 Instrumentation & Measurements</td>
<td>BEE3123 Basic Programming</td>
</tr>
<tr>
<td></td>
<td>BEE3113 Instrumentation & Measurements</td>
<td>BEE3123 Basic Programming</td>
</tr>
<tr>
<td>4</td>
<td>BEE4223 Microcontroller Applications</td>
<td>BEE4223 Microcontroller Applications</td>
</tr>
<tr>
<td></td>
<td>BEE4223 Microcontroller Applications</td>
<td>BEE4223 Microcontroller Applications</td>
</tr>
<tr>
<td></td>
<td>BEE4223 Microcontroller Applications</td>
<td>BEE4223 Microcontroller Applications</td>
</tr>
<tr>
<td></td>
<td>BEE4223 Microcontroller Applications</td>
<td>BEE4223 Microcontroller Applications</td>
</tr>
</tbody>
</table>

Total Unit For Graduation: 130

Engineering Electives

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEE4163</td>
<td>Alternative Energy</td>
<td>3</td>
</tr>
<tr>
<td>BEE3163</td>
<td>Electromechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>BEE4113</td>
<td>Electrical Installation Design</td>
<td>3</td>
</tr>
<tr>
<td>BEE4153</td>
<td>Power Quality</td>
<td>3</td>
</tr>
<tr>
<td>BEE4513</td>
<td>Industrial Automation</td>
<td>3</td>
</tr>
<tr>
<td>BEE4413</td>
<td>Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>BEE4323</td>
<td>Embedded Controller Technology</td>
<td>3</td>
</tr>
<tr>
<td>BEE4343</td>
<td>Process Control</td>
<td>3</td>
</tr>
<tr>
<td>BEE4373</td>
<td>Robotics</td>
<td>3</td>
</tr>
</tbody>
</table>

Foreign Language Level 1 & 2

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF1111</td>
<td>Mandarin for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1121</td>
<td>German for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1131</td>
<td>Japanese for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1141</td>
<td>Arabic for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1151</td>
<td>Spanish for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1161</td>
<td>Malay Language for Beginners**</td>
<td>1</td>
</tr>
<tr>
<td>UHF2111</td>
<td>Mandarin for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2121</td>
<td>German for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2131</td>
<td>Japanese for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2141</td>
<td>Arabic for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2151</td>
<td>Spanish for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2161</td>
<td>Malay Language for Intermediate**</td>
<td>1</td>
</tr>
</tbody>
</table>

For Foreigner Student:

i. UHE3062 Malaysia: The Impact of Globalisation

ii. UHE3012 Contemporary Leadership in Community
<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM</td>
<td>FIRST & SECOND</td>
<td>FIRST & SECOND</td>
<td>FIRST & SECOND</td>
<td>FIRST & SECOND</td>
</tr>
<tr>
<td></td>
<td>BEE1133 Circuit Analysis I</td>
<td>BEE1931 Basic Electronic Applications</td>
<td>BEE1941 Electrical Wiring</td>
<td>BEE1143 Circuit Analysis II</td>
</tr>
<tr>
<td></td>
<td>BEE2213 Analog Electronics I</td>
<td>BEE1213 Digital Electronics</td>
<td>BEE2931 Basic Programmable Logic Controller</td>
<td>BEE2233 Basic Electropneumatic</td>
</tr>
<tr>
<td></td>
<td>BEE1611 Occupational Safety & Health</td>
<td>BEE2123 Electrical Machines</td>
<td>BEE2143 Signals & Networks</td>
<td>BEE2941 Electromagnetic Fields Theory</td>
</tr>
<tr>
<td></td>
<td>BEE3133 Electrical Power Systems</td>
<td>BEE2712 Engineering Elective 1</td>
<td>BEE4323 Embedded Controller Technology</td>
<td>BEE41213 Multimedia Technology & Applications</td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 2</td>
<td>BEE3941 Microcontroller Applications</td>
<td>BEE4**3 Engineering Elective 3</td>
<td>BEE4**3 Engineering Elective 4</td>
</tr>
<tr>
<td></td>
<td>BEE4712 Engineering Project I</td>
<td>BEE4413 Digital Signal Processing</td>
<td>BEE4724 Engineering Project II</td>
<td>BEE4**3 Engineering Elective 5</td>
</tr>
<tr>
<td></td>
<td>BEE3113 Principles of Control Systems</td>
<td>BEE3941 Microcontroller Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE3233 Electronic System Design</td>
<td>BEE38413 Principles of Communication Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4213 Multimedia Technology & Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4223 Computer Programming</td>
<td>BEE3413 Principles of Communication Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE3423 Electronic System Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE3912 Engineering Project II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4724 Engineering Project II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4724 Engineering Project II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEE4**3 Engineering Elective 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>94</th>
<th>13</th>
<th>18</th>
<th>27</th>
<th>6</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>130</td>
<td>Total Unit For Graduation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Engineering Electives

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEE4343</td>
<td>Process Control</td>
<td>3</td>
</tr>
<tr>
<td>BEE4373</td>
<td>Robotics</td>
<td>3</td>
</tr>
<tr>
<td>BEE4383</td>
<td>Computer Controlled Systems</td>
<td>3</td>
</tr>
<tr>
<td>BEE4313</td>
<td>Industrial Control Technology</td>
<td>3</td>
</tr>
<tr>
<td>BEE4233</td>
<td>Data Communications</td>
<td>3</td>
</tr>
<tr>
<td>BEE4253</td>
<td>Computer Vision Systems</td>
<td>3</td>
</tr>
<tr>
<td>BEE4363</td>
<td>Distributed Control System</td>
<td>3</td>
</tr>
<tr>
<td>BEE4333</td>
<td>Intelligent Control</td>
<td>3</td>
</tr>
<tr>
<td>BEE4223</td>
<td>Power Electronics & Drives</td>
<td>3</td>
</tr>
</tbody>
</table>

Foreign Language Level 1 & 2

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF1111</td>
<td>Mandarin for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1121</td>
<td>German for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1131</td>
<td>Japanese for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1141</td>
<td>Arabic for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1151</td>
<td>Spanish for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1161</td>
<td>Malay Language for Beginners**</td>
<td>1</td>
</tr>
<tr>
<td>UHF2111</td>
<td>Mandarin for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2121</td>
<td>German for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2131</td>
<td>Japanese for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2141</td>
<td>Arabic for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2151</td>
<td>Spanish for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2161</td>
<td>Malay Language for Intermediate**</td>
<td>1</td>
</tr>
</tbody>
</table>

For Foreigner Student:

i. UHE3062 Malaysia: The Impact of Globalisation
ii. UHE3012 Contemporary Leadership in Community
<table>
<thead>
<tr>
<th>BACHELOR OF ELECTRICAL ENGINEERING (CONTROL & INSTRUMENTATION) (BEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>FIRST</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total Unit For Graduation: 130
Engineering Electives

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEE4383</td>
<td>Computer Controlled Systems</td>
<td>3</td>
</tr>
<tr>
<td>BEE4313</td>
<td>Industrial Control Technology</td>
<td>3</td>
</tr>
<tr>
<td>BEE4233</td>
<td>Data Communications</td>
<td>3</td>
</tr>
<tr>
<td>BEE4253</td>
<td>Computer Vision Systems</td>
<td>3</td>
</tr>
<tr>
<td>BEE4413</td>
<td>Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>BEE4333</td>
<td>Intelligent Control</td>
<td>3</td>
</tr>
<tr>
<td>BEE4223</td>
<td>Power Electronics & Drives Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Foreign Language Level 1 & 2

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF1111</td>
<td>Mandarin for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1121</td>
<td>German for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1131</td>
<td>Japanese for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1141</td>
<td>Arabic for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1151</td>
<td>Spanish for Beginners</td>
<td>1</td>
</tr>
<tr>
<td>UHF1161</td>
<td>Malay Language for Beginners**</td>
<td>1</td>
</tr>
<tr>
<td>UHF2111</td>
<td>Mandarin for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2121</td>
<td>German for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2131</td>
<td>Japanese for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2141</td>
<td>Arabic for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2151</td>
<td>Spanish for Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>UHF2161</td>
<td>Malay Language for Intermediate**</td>
<td>1</td>
</tr>
</tbody>
</table>

For Foreigner Student:

iii. UHE3062 Malaysia: The Impact of Globalisation
iv. UHE3012 Contemporary Leadership in Community
DEE1123
Circuit Analysis I
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course provides the basic concepts and engineering methods of DC circuit's analysis and serves as an essential entry point for the wider scope of electrical engineering. The contents include voltage, Ohm's Law, Kirchhoff's Law, series and parallel circuits, mesh and node analysis, Superposition and Source Transformation Theorems, and Response of First-Order circuits.

References

DEE1212
Computer Programming
Credit Hours: 2
Pre-Requisite: None

Synopsis
This course presents the C programming language for electrical and electronic engineer. The contents emphasis not only on the theoretical knowledge of programming but also the practical implementation in real-life situation. Students will learn basic structure of computer programming in C language. Students will also exposed to method for basic hardware/software interfacing and real-life problem solving environment.

References
2. HM Deitel & PJ Deitel, “How to Program.” Prential Hall

DEE1941
Technical Drawing
Credit Hour: 1
Pre-Requisite: None

Synopsis
This course introduces student to two engineering skill; Electrical Installation I and AutoCAD. The student will learn about domestic wiring and installation, safety measures and also perform the practical of single phase wiring. The student will also learn about 2D design using AutoCAD which will also covers AutoCAD fundamentals, hatching, printing and plotting technique.

References

DEE2123
Circuit Analysis II
Credit Hours: 3
Pre-Requisite: DEE1123

Synopsis
This course introduces the basic knowledge in AC electrical circuit fundamentals which include knowledge of electromagnetism, alternating current and voltage, phasors and complex numbers, sinusoidal and steady state analysis, AC power, rms value, transformer, RLC circuits and also introduction to three-phase systems.

References
DEE2313
Instrumentation & Measurements
Credit Hours: 3
Pre-Requisite: None

Synopsis
This Course introduces students to the principles of instrumentation and measurements, determination of error that caused by the meters. The students will be exposed to the architecture and the operation of DC and AC meters, oscilloscope, signal generator, sensors and transducers, analysis of DC and AC meters and introduction to signal conditioning.

References

DEE3931
Electro Pneumatic
Credit Hour: 1
Pre-Requisite: None

Synopsis
In this course, the students will be exposed to basic of programmable logic control (PLC), specifically Omron PLC, and also learn the basic of pneumatic. In PLC, the student will learn how to practically perform PLC programming by using ladder diagram, identifying input and output devices and also lean how to wire up the PLC hardware. In Pneumatic, the student will learn about cylinders, valves, compressed air system and at the same time will practically use the pneumatic tools and equipment.

References
5. F. Ebel, G.Prede & D.Scholz, “Pneumatic, Basic Level TP101, Textbook”, FESTO Didactic, Germany, 2004
DEE1233
Analog Electronics I
Credit Hours: 3
Pre-Requisite: DEE1123

Synopsis
Nowadays, industrial demands especially in semiconductor devices are increasing rapidly. This requires a strong basic knowledge in semiconductors. In this course, an introduction of basic knowledge in analog electronics, that includes knowledge of semiconductors and modern electronic components such as diodes, rectifiers, capacitor as filters, and also BJT are covered. Their basic applications and circuit troubleshooting technique are also discussed in this course to meet the industrial demands.

References

DEE3313
Principles of Control Systems
Credit Hours: 3
Pre-Requisite: None

Synopsis
This Course approaches the students to introduction to control system technology, its applications, system response, stability analysis and compensation. Give exposure to basic design of control system.

References

DEE1223
Digital Electronics
Credit Hours: 3
Pre-Requisite: None

Synopsis
This subject is emphasis on the fundamental of digital electronics. The student is first thought about the number system and logic gates before introducing them to digital IC technology. Then they are exposed to both combinational logic network and combinational MSI logic. In concurrence with this, the fundamental
of sequential logic, flip-flop, counter and shift register will be thought. Finally, the memory devices are introduced.

References

DEE2931
Basic Programmable Logic Controller
Credit Hour: 1
Pre-Requisite: None

Synopsis
This course is an advance level of PLC and pneumatic where student will be exposed to the industrial application of PLC and learn about tools and devices in electro pneumatic. The student will practically perform the PLC programming and practically execute it by using several applications. In electro pneumatic, students will learn to design and use electro pneumatic tools and application.

References
2. F. Ebel, G.Prede & D.Scholz, “Electropneumatics, Basic Level TP201, Textbook”, FESTO Didactic, Germany, 2004

DEE2612
Basic Maintenance Technology
Credit Hours: 2
Pre-Requisite: None

Synopsis
This course exposes the students to the required technical / engineering discipline knowledge and skills to diagnosis and correct faults across a wide range of equipment. The course will provides knowledge of different strategic approaches best suited to maintenance and the manufacturing environment and context.
References

DEE3313
Principles of Control Systems
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students the basic electrical power systems. Students will be exposed to the basic concept of power system management, the types and functions of protective devices and switchgears. Students will also be introduced to the principles of electrical machines. Student will learn the fundamental aspects of rotating electrical machines such as operational characteristics of electrical apparatus.

References

DEE3213
Microprocessor Fundamentals
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course in an introduction to a microprocessor. Students are exposed to the internal architecture of the microprocessor, various instruction sets, and basic hardware design of microprocessor base. Students are also learned in team to complete a course projects to enhance knowledge in developing hardware and software in related to design of microprocessor base.

References
1. Wray, Using Microprocessors & Microcomputers: Motorola family, Prentice Hall
DEE3233
Analog Electronics II
Credit Hours: 3
Pre-Requisite: DEE1233

Synopsis
Demands from industry on knowledgeable manpower especially who have in-depth knowledge in semiconductors area are increasing rapidly. To fulfill the demand, this course offers wide coverage of knowledge in analog devices. The topics covers CAD using PSpice, basic FET and amplifiers, power amplifiers, frequency response analysis as well as operational amplifiers. Their basic applications and circuit troubleshooting techniques are also discussed in this course in order to meet the industrial demands.

References

DEE2941
Motor Control
Credit Hour: 1
Pre-Requisite: None

Synopsis
This course introduces student to three phase wiring and also motor control circuitry. The student will learn how to practically perform electrical wiring involving three phase supply and also the safety measures required. The student will also learn to design motor control circuitry such as forward reverse and star/delta connection, then practically test the connection by using real control and protection devices.

References
DEE3413
Principles of Communication System
Credit Hours: 3
Pre-Requisite: None

Synopsis
An introduction to communication technology where students are exposed to various fundamental techniques of communication. This includes the introduction to modulation techniques such as amplitude modulation (AM) and frequency modulation (FM). Digital modulation techniques such as pulse modulation, shift keying and line coding are also be discussed.

References
2. Tomasi, Fundamental of Electronic Communications Systems, Prentice Hall
3. Tomasi, Advanced Electronic Communications Systems, Prentice Hall
4. Pearson, Basic Communication Theory, Prentice Hall
5. Roddy, Electronic Communications, Prentice Hall.

DEE3223
Industrial Electronics
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course presents the characteristics of active filters using operational amplifiers, characteristics of the active filter using operational amplifiers, characteristics of thyristors, power supply design, power amplifier design and analysis of Analog to Digital Converter (ADC) and Digital to Analog Digital Converter (DAC).
References

DEE3263
Embedded Controller Technology
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course is an introduction to a microcontroller. Students are exposed to the internal architecture of the microcontroller, various instruction sets and basic hardware design of microcontroller-based. For this reason this course introduces the hardware, software, design and interface with various devices.

References
2. Tocci, Microprocessors & Microcomputers: Software & Hardware, Prentice Hall.

DEE3941
Microcontroller Application
Credit Hours: 1
Pre-Requisite: None

Synopsis
This course introduces student to basic autotronics knowledge and PC Interfacing. The student will learn on how to design an automatic controller using the combination of electronic circuit, switches, relay, timer, sensors, ac/dc motor, inverter and PLC. The student will also learn about communication technique between pc based controller to the hardware via RS232, USB or parallel port. It is intended for student to be familiar with the system design and programming of PC Based Data Acquisition & Control (DA&C) using commercially available DA&C cards. It provides a solid foundation to the students so that they can identify the proper applications of PC Based Data Acquisition & Control in industrial environment.

References

DEE3719
Industrial Training (HW)
Credit Hours: 9
Pre-Requisite: None

Synopsis
In industrial training the students should gain insight into the industrial practice, in order to visualize the tasks and possibilities of their later occupation work. All students are required to undergo an industrial training for a certain period that has been agreed by the faculty during the last semester of the academic year. The performance of each student during the periods of his/her Industrial Training is evaluated jointly by the faculty staff, and the representatives from employer organizations. The student is required to maintain proper records in his/her log book and submit the reports along with an Industrial Training Report on the training received by him/her.

References
1. “Industrial Training Guidelines”, KUKTEM.

DEE3723
Industrial Training Report (HW)
Credit Hours: 3
Pre-Requisite: None

Synopsis
All students are required to undergo an industrial training for a certain period that has been agreed by the faculty during the last semester of the academic year. The performance of each student during the periods of his/her Industrial Training is evaluated jointly by the faculty staff, and the representatives from employer organizations. The student is required to maintain proper records in his/her log book and submit the reports along with an Industrial Training Report on the training received by him/her.

References
1. “Industrial Training Guidelines”, KUKTEM.
BACHELOR PROGRAMME COURSE SYNOPSIS

BEE4333
Intelligent Control
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students to the principles of Artificial Intelligence which includes Expert System, Fuzzy Logic, Artificial Neural Networks and Genetic Algorithms. Project based exercise will also included in order to have a better understanding on the course.

Course Outcomes
CO1: Explain the concept of intelligent control and their applications.
CO2: Analyze the Fuzzy Logic and Artificial Neural Networks through case study or project based exercise.
CO3: Analyze Genetic Algorithms system through case study.

References
3. Marzuki Khalid, “Artificial Intelligence: Artificial Neural Networks Module”, Universiti Teknologi Malaysia

BEE4373
Robotics
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course provides an understanding of the principles of operation of automated equipment with particular reference to the industrial robot. This course covers classification and various types of robots and its application, robot kinematics, differential kinematics, robot dynamics, robot path planning and robot sensing.

Course Outcomes
CO1: Understand robotics and sensing system, its basic components and applications.
CO2: Determine the velocity of a robot manipulator using Jacobian matrix.
CO3: Demonstrate the trajectory command that satisfies a set of constrained via points.
CO4: Apply techniques and skills of robot manipulation through laboratory work.
CO5: Analyze robot kinematics and dynamic.

References

BEE4523
Industrial Instrumentation
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course presents the process parameters that are applied in most processing industries of pressure, level, temperature and flow for both measurement and control applications. The principles of applications of primary sensing elements, final control elements, transducers and transmitters which are used in process industries are discussed. Industrial application for instrumentation and process control is also covered.

Course Outcomes
CO1: Describe the concept and suitable instrument for process measurement.
CO2: Implement the equations involving pressure, temperature, level, flow, and final control element for numerical problems.
CO3: Analyze the information of measurement device and industrial application.
CO4: Evaluate the operation and installation procedure for selected measurement instruments in a particular industrial situation.

CO5: Communicate effectively through written communication.

References

BEE3233
Electronic System Design
Credit Hours: 3
Pre-Requisite: BEE1213

Synopsis
In this course, the principles of advanced digital design will be introduced. It builds on logic design principles learned in BEE 1213 and demonstrates how digital design and rapid prototyping can be facilitated by FPGAs and hardware description languages (HDL). Digital design is taught at a higher level of abstraction than BEE1213. It has a lab component involving VHDL and FPGAs.

Course Outcomes
CO1: Describe the principles of designing finite state machines (FSM).
CO2: Implement logic circuit using HDL.
CO3: Design a digital system using combinational & sequential (medium scale Integrated logic) MSI component.
CO4: Design finite state machines based on electrical & electronics engineering problem.
CO5: Work in team and communicate effectively.

References

BEE4253
Computer Vision System
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students to the principles of Computer Vision which includes image formation and low level image processing, theory and techniques for extracting features from images, measuring shape and location, and recognizing and classifying objects. Student will be exposed to design project using image processing software.

Course Outcomes
CO1: Apply the concept of computer vision and their Applications
CO2: Evaluate various image processing techniques.
CO3: Develop a simple vision system application using image processing software.

References

BEE4323
Embedded Controller Technology
Credit Hours: 3
Pre-Requisite: BEE1213

Synopsis
This course is an introduction to a microcontroller and is designed to give the students a fundamental understanding of the microcontroller-based system. It provides an introduction to the architecture and the design of hardware and software for the Motorola M68HC11. Various instruction sets and internal features are explained. Its applications as a single chip controller are discussed and its interfacing with various I/O devices is demonstrated.

Course Outcomes
CO1: Explain the architecture of the microcontroller.
CO2: Develop a firmware using assembly language.
CO3: Design a simple hardware based on 68HC11 microcontroller.
CO4: Work in a team and communicate effectively.

References
5. Driscoll, "Data Acquisition and Process Control with the M68HC11 Microcontroller", Prentice Hall,

BEE4233
Data Communications
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course emphasizes the importance and the applications of the Data Communications in the Electrical & Electronics Engineering courses. The syllabus covers data communications, communication networks and TCP/IP protocol suite.

Course Outcomes
CO1: Define data communications generally and describe various types of computer network protocols.
CO2: Identify data transmission using ISO standard and explain the protocol of data transmission.
CO3: Determine standard interface for certain data network protocols.

References
BEE4313
Multimedia Technology & Applications
Credit Hours: 3
Pre-Requisite: None

Synopsis
This subject emphasizes on integration of multiple media (text, images, audio, video and animation) using various practices of software application and to develop multimedia system. It introduces how multimedia can be used in various application areas. Issues in multimedia will also be discussed.

Course Outcomes
CO1: Demonstrate the knowledge of principles in multimedia (text, images, audio, video and animation), compression techniques and multimedia technologies
CO2: Practice various type of software application in multimedia system.
CO3: Develop a multimedia system
CO4: Work effectively as an individual, and as a member/leader in a team.

References

BEE4413
Digital Signal Processing
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students to the fundamental principles of digital signal processing including sampling theorems, z-transform, Linear Time-invariant systems analysis, Discrete-Time Systems structures, Filter design and Discrete Fourier Transform. This course also exposes students to computational tools (MATLAB) in solving engineering problems related to DSP.

Course Outcomes
CO1: Describe the DSP fundamental theory and components
CO2: Apply z-transform for analysis of discrete time system
CO3: Define various structure of discrete-time system
CO4: Design various types of FIR and IIR filter based on a set of specification.
CO5: Apply DFT technique to analyze signal

References

BEE3132
Power Generation & Operation
Credit hours: 3
Pre-Requisite: None

Synopsis
This course introduces students to the concept of power system operation and control. Students will be exposed to the concept of power system management to meet load demand at optimal operating cost and various ways in controlling electrical power.

Course Outcomes
CO1: Perform calculation and analyze related to planning of electrical power.
CO2: Differentiate and analyze control method in power.
CO3: Model and analyze power system network under steady state conditions using power system software.
CO4: Work in team and communicate effectively.

References

BEE3143
Power System Analysis
Credit Hours: 3
Pre-Requisite: BEE3133

Synopsis
This course introduces students to the fundamental concepts of power system analysis which covered the power flow problem analysis, balanced and unbalanced fault analysis and stability evaluation. Students will be exposed to the problems commonly encountered in power system engineering practice, analysis and techniques applied to solve some practical problems in power systems.

Course Outcomes
CO1: Analyze the power flow equations for an n-bus power system.
CO2: Analyze balance and unbalance fault analysis.
CO3: Evaluate the performance of power system stability.
CO4: Analyze model of power system network under steady state and faults conditions using power system software.
CO5: Work in team effectively.

References

BEE4143
Power System Protection & High Voltage
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students to the concept of power system protection and high voltage engineering. It covers in detail the components of power system protections and relay coordination. The theory of high voltage engineering will also be covered in this course.

Course Outcomes
CO1: Describe the components of power system protection.
CO2: Recognize the various type of circuit breaker
CO3: Design the relay setting of IDMT and distance protection
CO4: Explain the concepts of high voltage engineering
CO5: Work in team and communicate effectively.

References

BEE4163
Alternative Energy
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students to the alternative energy theories and concepts of some components and energy utilization in electric power system industries. It covers energy conversion, utilization and storage system for renewable technologies such as solar, wind, biomass, fuel cell, wave and etc. This course emphasis on fundamental of photovoltaic (PV) systems such as solar energy potential and solar energy resources, solar cells and its electrical characteristics, PV modules and array, PV modules interconnection, conversion into electrical energy, energy storage, power conditioning and maximum power point tracking (MPPT), inverter control topologies, design and sizing for stand-alone and grid-connected system. It also touches upon the environmental consequences of energy conversion and how alternative energy can reduce pollution and global climate change.

Course Outcomes
CO1: present alternative energy scenario
CO2: Understanding solar resources and PV system components.
CO3: Explain effects of power system to environment.
CO4: Design PV System for power generation
BEE3133
Electrical Power Systems
Credit Hours: 3
Pre-Requisite: BEE1133

Synopsis
This course introduces the fundamental of electrical power system which are the overview of power system, generation, transmission lines, distribution, representation of components, basic power system analysis.

Course Outcomes
CO1: Discuss the roles of each component in Malaysian power system operation and explain the basic concept of electricity tariff and energy efficiency.
CO2: Analyse the basic design concepts and perform component representation using per-unit system.
CO3: Derive and apply suitable equations related to parameters, models and performances of power transmission lines.
CO4: Work in team effectively

References
3. William D. Stevenson, Jr., “Element of Power System

BEE4113
Electrical Installation Design
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course provides knowledge in electrical installation design especially for commercial buildings. It explores the basic estimation and design procedure based on various codes of practice and standards. Student will be introduced to design a few basic systems in electrical installation such as lighting, protection system, grounding and lightning protection. Students also involve in problem solving and troubleshooting technique when they study on system inspection and testing.

Course Outcomes
CO1: Design lighting layout and power layout using CADD software.
CO2: Estimate electrical load for an installation and design single-line diagram for the installation.
CO3: Explain the protection system used in electrical installation.
CO4: Design grounding system and lightning protection system.
CO5: Explain basic inspection and testing for building electrical installations.

References

BEE4153
Power Quality
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course is an introduction to power quality disturbances. It first introduces the concept of power quality and then quantifies the particular power quality disturbances that fall within the wider umbrella of electromagnetic phenomena. It provides a strong foundation for better understanding of the underlying principles of each power quality problem. Students are exposed to power quality solutions, standards, monitoring tools, grounding practices and distributed generation.

Course Outcomes
CO1: Identify types of power quality disturbances.
CO2: Classify problems and effects of power quality.
CO3: Evaluate methods to eliminate power quality interference
CO4: Assess severity of power quality disturbances.
CO5: Work in group environment.

References

BEE4223
Power Electronics and Drive Systems
Credit Hours: 3
Pre-Requisite: None

Synopsis
The primary objective of the course is to give students a foundation of knowledge, understanding, analysis and design of power electronics circuits for conversion and control of electrical energy. The course presents concepts, fundamentals analysis tools, practical consideration for design, and a range of power
electronics applications. Practical experiments in the laboratory will also be conducted. Students will be exposed to the power converter, PWM switching techniques, DC and induction motor drives.

Course Outcomes

CO 01: Demonstrate switching characteristics of basic solid state power devices, operating principles, advantages and disadvantages of basic power electronic converter topologies.

CO 02: Analyze power electronic converters using commercially available simulation tools.

CO 03: Design power electronic converters to meet functional objectives.

CO 04: Work effectively in team.

References

BEE4343

Process Control

Credit Hours: 3

Pre-Requisite: None

Synopsis

The course introduces students to establishing the process performance through methods of specifying and measuring process performance. With basic overview of the control loop and its components, this leads students for designing process control loops, process control improvement and techniques to assist in the process of identifying the potential for improved process control performance in team.

Course Outcomes

CO1: Describe the basic principles and objectives of control in process industries.

CO2: Apply knowledge of mathematics and sciences to process dynamics and control.

CO3: Analyze and utilize process input output data to form empirical models of a process plant.

CO4: Use and apply modern computational techniques and tools for solving process control problems.

CO5: Evaluate PID controller performance with different tuning strategies.

CO6: Work effectively in team.
References

BEE4313
Industrial Control Technology
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course mainly consists of three major modules which are related to industrial control application. Students will gain knowledge in theoretical part of modern control technology as well as application of control system in manufacturing and process control.

Course Outcomes
CO1: Describe types of controller to be used in industrial applications.
CO2: Derive mathematical modeling of fluid system.
CO3: Analyze suitable controller for manufacturing and process application.
CO4: Evaluate the application of analogue and digital Controllers

References

BEE4383
Computer Controlled Systems
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students to the basic design and analysis tools used in practical discrete-time and sampled data control systems as well as to give an exposure of the student to the general area of linear systems theory which appears so very often in all branches of engineering.

Course Outcomes
CO1: Identify the principles of signal conversion in digital control systems.
CO2: Apply the sampling process, associated theorem and various form of sampling operations.
CO3: Apply the mathematical modeling of the discrete-time system in z-domain.
CO4: Apply various method of discretization of analog transfer function into discrete-time.
CO5: Apply realization of Digital Filters and Controllers
CO6: Analyze the quantization effect due to truncation and rounding propagating through system’s transfer function

References

BEE1931
Basic Electronic Applications
Credit Hours: 2
Pre-Requisite: None

Synopsis
Students will learn how to use power supply, function generator, digital multimeter, oscilloscope, analog digital trainer and IC tester. The students will learn on how to design a switching circuit and how to interface between electronics and electrical circuit.

Course Outcomes
CO1: Apply right safety precaution in laboratory and workplace.
CO2: Utilize DC power supply, oscilloscope, function generator, digital multi-meter and Analog Digital Trainer.
CO3: Recognize the function of switches, relays and sensor.

CO4: Construct electrical and electronic circuit to meet design requirement.

References
2. Thomas L. Floyd, Electronics fundamentals : circuits, devices and applications, Prentice Hall, 2004

BEE1951
Technical Drawing
Credit Hours: 2
Pre-Requisite: None

Synopsis
This course covers theoretical knowledge and practical-based on doing technical drawing by using mainly AUTOCAD software. The software is focusing on the fundamental level of AUTOCAD skill until the plotting technique. The students will be guided and exposed to draw basic technical drawing, electrical and electronic circuit diagrams as well as the geometrical drawing.

Course Outcomes
CO1: Identify the basic commands and functions in AUTOCAD.
CO2: Use AUTOCAD software as the main tool to draw technical drawing especially in electrical and electronics engineering field.

References

BEE2931
Basic Programmable Logic Controller
Credit Hours: 2
Pre-Requisite: None

Synopsis
This course covers the fundamental of Programmable Logic Controller (PLC) included input and output component, memory address, wiring diagram, troubleshooting and design of a ladder diagram.

Course Outcomes
CO1: Describe the basic principle of PLC and it's function
CO2: Implement PLC Hardware configuration.
CO3: Execute and practice PLC Programming for specific tasks.
CO4: Practice right attitude and safety procedure.

References
3. OMRON “Sysmac CQM1H Series Operation Manual”, Revised August 2005

BEE2951
PLC Applications
Credit Hours: 2
Pre-Requisite: None

Synopsis
The student will learn on how to design the PLC Programming to control simple manufacturing applications. Students are also exposed to the analog input and output of PLC card.

Course Outcomes
CO1: Configure the Analog Input and Output of PLC Card
CO2: Demonstrate and discuss the function of discrete and analog card.
CO3: Identify input and output component of simple manufacturing applications
CO4: Develop a program to operate the manufacturing applications
CO5: Practice right attitude and safety procedures

References
5. John R Hackworth & Frederick D Hackworth, Jr

BEE3931
PC Interfacing
Credit Hours: 2
Pre-Requisite: None

Synopsis
This subject covers the development of Graphical User Interface (GUI) using programming software and the communication technique between pc based controller to the hardware via DAQ CARD. It is intended for student to be familiar with the system design and programming of PC Based Data Acquisition & Control (DA&C) using commercially available DA&C cards. It provides a solid foundation to the students so that they can identify the proper applications of PC Based Data Acquisition & Control in industrial environment.

Course Outcomes
CO1: Develop Graphical User Interface (GUI) using programming software
CO2: Design a simple program to control specific applications
CO3: Identify hardware specifications to integrate with software
CO4: Develop a program to interface between software and Hardware
CO5: Apply right safety precaution in laboratory and workplace.

References

BEE1941
Electrical Wiring
Credit Hours: 2
Pre-Requisite: None

Synopsis
This course introduces students to the single phase and three phase wiring and installation. The students will learn about supply system, rules and regulation, wiring system and electrical...
protection system. They are also will practice in applying trunking and conduits for electrical wiring as well as doing fitting and installation of electrical system devices. Then, they will conduct inspection and testing on their wiring and installation as safety conformation and fulfill the regulations.

Course Outcomes
CO1: Interpret rules and regulation for electrical wiring comprising of cable selection, load calculation, inspection and testing.
CO2: Construct the single phase and three phase electrical wiring correctly.
CO3: Use suitable wiring tools and accessories.
CO4: Demonstrate right attitude and safety implementation.

References

BEE1961
Motor Control
Credit Hours: 2
Pre-Requisite: None

Synopsis
This course exposes students to various types of three phase induction motor starting circuit. The students also will learn about the principle of electrical motor and its protection system.

Course Outcomes
CO1: Explain the function, types and components of electrical motor.
CO2: Implement motor starter circuit.
CO3: Construct motor control circuit using suitable tools and accessories.
CO4: Practice right attitude and safety implementation.

References

BEE2941
Basic Electropneumatics
Credit Hours: 2
Pre-Requisite: None
Synopsis
This subject covers about pneumatic and electropneumatics system starting from energy supply, input elements, processing elements, control elements and working elements. The student also will learn how to used electropneumatic tools and design electropneumatic control system using relay, timer, counter and sensors.

Course Outcomes
CO1: Describe pneumatic & electropneumatic system and its components.
CO2: Identify operation of various type of sensors related to pneumatic system.
CO3: Design pneumatic & electropneumatic control system.
CO4: Practice right attitude and safety procedure.

References
2. F. Ebel, G.Prede & D.Scholz, “Pneumatic, Basic Level TP101, Textbook”, FESTO Didactic, Germany, 2004
3. F. Ebel, G.Prede & D.Scholz, “Pneumatics, Advanced Level TP102, Textbook”, FESTO Didactic, Germany, 2004
5. F. Ebel, G.Prede & D.Scholz, “Electropneumatics, Basic Level TP201, Textbook”, FESTO Didactic, Germany, 2004

BEE2961
Industrial Electropneumatic
Credit Hours: 2
Pre-Requisite: None

Synopsis
The students will learn on how to control and integrate the electropneumatics system using programmable logic controller (PLC). This subject focuses on applying programming for various types of electropneumatics applications.

Course Outcomes
CO1: Understanding of programmable logic controller structure and configurations.
CO2: Understand and apply ladder programming instruction
CO3: Design and apply programmable logic controller in electropneumatics applications.
CO4: Practice right attitude and safety procedure.

References
BEE3941
Microcontroller Applications
Credit Hours: 2
Pre-Requisite: None

Synopsis
This course exposes students to the Peripheral Interface Circuit programming and hardware configurations. Beginning with understanding on PIC architecture, applying programming software is used to operate hardware function. Several applications such as ADC, PWM, UART for USB and LCD functions are used to get more functioning development for PIC control system.

Course Outcomes
CO1: Explain the function, types and components of PIC control system.
CO2: Implement PIC hardware and software.
CO3: Demonstrate right attitude and safety implementation.
CO4: Construct PIC circuit using suitable tools and components.

References

BEE1133
Circuit Analysis I
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces the basic concepts and engineering methods of DC and AC circuit analysis. The contents include Ohm's Law, Kirchhoff's Law, series and parallel circuits, Mesh and Nodal analysis, Source Transformation Theorems, and responses of basic First Order circuits.

Course Outcomes
CO1: Describe basic principle of laws, rules and circuit analysis (Direct Current and Alternating Current).
CO2: Analyze linear circuits.
CO3: Apply the circuit analysis techniques to solve any given linear electric circuit.
CO4: Work in a team and communicate effectively

References

BEE1143
Electric Circuits II
Credit Hours: 3
Pre-Requisite: BEE1133

Synopsis
This course provides the basic concepts and engineering methods of DC and AC circuits. The contents include applications of Mesh and Nodal analysis, Superposition and Source Transformation Theorems, Thevenin and Norton Theorem. Resonant circuit, second order circuit and Balanced 3-phase circuits are also covered.

Course Outcomes
CO1: Describe the basic principles of circuit theorems (DC and AC)
CO2: Perform AC steady-state power calculations, power triangle and power factor correction.
CO3: Analyze variation RLC circuits using frequency domain and resonant parameter.
CO4: Analyze second order circuits.
CO5: Apply the theorems and concepts in order to analyze any given linear electric circuit.
CO6: Work in a team and communicate effectively.

References

BEE1213
Digital Electronics
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course emphasizes on the fundamental of digital electronics. The student is first taught about the number system and logic gates before introducing them to digital IC technology. Then they are exposed to both combinational logic network and combinational MSI logic. In concurrence with this, the fundamental of sequential logic, flip-flop, counter and shift register will be taught. Finally, the memory devices are introduced.
Course Outcomes
CO1: Apply various techniques for digital logic simplification
CO2: Apply basic gates, flip flops and MSI in digital circuit
CO3: Analyze simple logic system
CO4: Work in a team and communicate effectively

References

BEE1222
Computer Programming
Credit Hours: 2
Pre-Requisite: None

Synopsis
This course presents the C programming language for electrical & electronic engineer. The contents emphasis not only on the theoretical knowledge of programming but also the practical implementation in real-life situation. Students will learn basic structure of computer programming in C language. Students will also be exposed to method for basic hardware/software interfacing.

Course Outcomes
CO1: Explain basic hardware/software interfacing.
CO2: Demonstrate structure programming technique using high level language.
CO3: Use computer programming techniques in solving electrical & electronics engineering problem.
CO4: Work in team and communicate effectively.

BEE1313
Instrumentation & Measurement
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students to the principles of instrumentation and measurements, determination of error that caused by the meters. The students will be exposed to the architecture and the operation of DC and AC meters, oscilloscope, signal generator, sensors and transducers, analysis of DC and AC meters and introduction to signal conditioning.

Course Outcomes
CO1: Describe the elements of Instrumentation & Measurement System.
CO2: Solve numerical problems for AC and DC meters.
CO3: Demonstrate the operation of oscilloscope, signal generator, measuring devices and their applications.

CO4: Communicate and express idea effectively.

References

BEE2123
Electrical Machines
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces the fundamental concepts and principles of transformer and various types of electrical machines. It is intended for students to understand fundamental aspects of rotating electrical machines. The first part of the course is a quick review of some electromagnetism fundamental while the following will deal with the transformers and different types of electrical machines.

Course Outcomes
CO1: Describe the basic principles of selected electrical machines.
CO2: Analyze the transformer and machines equivalent circuits.
CO3: Analyze the operating conditions for electrical machines under steady state conditions.
CO4: Determine and interpret the parameters of transformer and torque-speed characteristics of rotating machines.
CO5: Communicate effectively

References

BEE2143
Signals & Networks
Credit Hours: 3
Pre-Requisite: BUM2133

Synopsis
This course introduces the students to various signals transformation techniques and its application to electrical circuits. This includes Fourier Series, Fourier Transforms and Laplace
Transform. The concept of transfer function is introduced in filter analysis and design with additional two port network techniques.

Course Outcomes
CO1: Identify various types of signals and systems.
CO2: Apply Fourier and Laplace transform in solving electrical circuit problems.
CO3: Analyze filters characteristic and obtain its transfer function.
CO4: Apply two-port parameters in solving electrical circuit problems

References

BEE2213
Analog Electronics I
Credit Hours: 3
Pre-Requisite: BEE1133

Synopsis
This course introduces the fundamental of semiconductor devices which are diodes and transistors. It also describes BJT transistors operational characteristic that covers the DC and AC analysis. In addition, the various type of BJT configuration will be examined and analyzed. Furthermore, the analysis of the amplifier circuit will be extended to its frequency response.

Course Outcomes
CO1: Describe the characteristic and operation of semiconductor diodes and BJT transistor properties in AC and DC condition
CO2: Analyze the operating condition of various BJT configuration in AC and DC condition
CO3: Determine the frequency response of various BJT configuration

References
BEE2223
Microprocessor
Credit Hours: 3
Pre-Requisite: BEE1213

Synopsis
This course in an introduction to a microprocessor. Students are exposed to the internal architecture of the microprocessor, various instruction sets, and basic hardware design of microprocessor-based

Course Outcomes
CO1: Explain the architecture of the microprocessor system.
CO2: Use assembly language to program a microprocessor system.
CO3: Develop a simple hardware based on 68000 microprocessor
CO4: Work in a team and communicate effectively

References

BEE2233
Analog Electronics II
Credit Hours: 3
Pre-Requisite: BEE2213

Synopsis
This course introduces the fundamental of semiconductor devices which are transistors. It also describes Field-Effect Transistor (FET) operational characteristic that covers the DC and AC analysis. Some important devices such as op-amp and active filters are also introduced. Towards the end of this course, students are exposed to the applications of these semiconductor devices. During the laboratory sessions, students are expected to demonstrate and troubleshoot basic semiconductor device circuits.

Course Outcomes
CO1: Describe the characteristic and operation of FET properties and op-amp in AC and DC condition
CO2: Identify various FET and op-amp configuration in AC and DC condition
CO3: Design for various type of FET amplifier configuration and active filters
CO4: Demonstrate and troubleshoot FET and op-amp circuits

References
BEE3113
Electromagnetic Fields Theory
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students on the importance and the applications of the Electromagnetic Fields Theory in the Electrical Engineering courses. The syllabus covered includes the concepts of electrostatic field, magnetostatic field and electromagnetic field (time varying field).

Course Outcomes
CO1: Apply the basic concept of vector algebra in coordinate system to solve electric and magnetic fields problems.
CO2: Solve electric and magnetic fields including stored energies due to specified charge and current distributions.
CO3: Solve problem involving one dimensional Poisson’s and Laplace’s equations
CO4: Differentiate the physical basis of Maxwell's equations in integral and differential forms.
CO5: Apply the properties of electromagnetic (EM) wave in relation to its propagation.

References

BEE3313
Principles of Control Systems
Credit Hours: 3
Pre-Requisite: None

Synopsis
This course introduces students to the control system technology, mathematical models of feedback systems. The students will be exposed to transient and steady-state analysis, root locus, frequency response and analysis design of compensator.

Course Outcomes
CO1: Acquire fundamental concept of control systems.
CO2: Derive and manipulate mathematical model and transfer function of physical systems.
CO3: Analyze control system performance in terms of transient, steady-state, and frequency response of a linear time-invariant systems.

CO4: Design a compensator to meet specifications in frequency domain.

References
2. Katsuhiko Ogata, Modern Control Engineering, Prentice Hall.

BEE3413
Principles of Communication Systems
Credit Hours: 3
Pre-Requisite: BEE3413

Synopsis
This course introduces theories in the area of communication systems. Topics covered include the basic elements of communications, signal analysis, amplitude modulation, angle modulations and digital modulations, as well as transmission channels and noise impact on the modulation system. Finally, some emergence of digital communication technologies are presented and compared.

Course Outcomes
CO1: Describe the basic principle of communication system
CO2: Analyze and differentiate various type of modulation and demodulation techniques
CO3: Apply the concepts to practical applications in Telecommunication
CO4: Work in a team and communicate effectively

References
BEE4632
Maintenance Technology
Credit hours: 2
Pre-Requisite: None

Synopsis
This course exposed the students to various maintenance strategies and technologies available for maintenance practices adoption. The course will introduce the students to the many skills required for the implementation of an effective maintenance program, including workplace environment simulation, i.e. interpersonal skills, desired work-culture, costs appreciation, workplace safety, workplace productivity, etc.

Course Outcomes
CO1: Describe the importance of maintenance organization in an industry.
CO2: Classify the types of maintenance strategies available.
CO3: Distinguish differences of predictive maintenance tools
CO4: Implement an effective maintenance program for a specific set-up.
CO5: Execute an effective failure analysis Techniques
CO7: Demonstrate appropriate and effective action for plant shutdown programme

References